Rancang Bangun Alat Elektrostimulator Portable

Authors

  • Dzulkifli Dalung Simamora Sekolah Tinggi Ilmu Kesehatan Semarang
  • Imam Tri Harsoyo Sekolah Tinggi Ilmu Kesehatan Semarang
  • Pramesti Kusumanigntyas Sekolah Tinggi Ilmu Kesehatan Semarang

Keywords:

Arduino, Electrostimulator, Frequency, Nextion, Wave

Abstract

An electrostimulator is a medical device designed to deliver controlled electrical stimulation to nerves and muscles, supporting rehabilitation and therapy for patients with neuromuscular disorders. This study focuses on designing and developing a portable electrostimulator that offers three distinct waveform modes: continuous wave, discontinuous wave, and dense-disperse wave, providing versatility for different therapeutic needs. The device is powered and controlled by an Arduino Mega 2560 microcontroller, coupled with a Nextion touchscreen LCD interface that allows users to adjust waveform type, frequency, and stimulation intensity with ease. Waveforms are generated through an NE555 IC circuit, with amplitude adjusted via a potentiometer and subsequently amplified using a step-up transformer to achieve therapeutic voltage levels. Functionality and performance tests were conducted using an oscilloscope, and the device was benchmarked against a commercial KWD-808 electrostimulator. Results demonstrate that the developed electrostimulator reliably produces the intended waveforms, achieving peak voltages up to 32V and frequencies ranging from 33.3 Hz to 66.6 Hz, confirming its effectiveness and feasibility for non-clinical nerve and muscle therapy applications.

References

Alshallash, K. S., Sharaf, M., Abdel-Aziz, H. F., Arif, M., Hamdy, A. E., Khalifa, S. M., Hassan, M. F., Abou Ghazala, M. M., Bondok, A., Ibrahim, M. T. S., Alharbi, K., & Elkelish, A. (2022). Postharvest physiology and biochemistry of Valencia orange after coatings with chitosan nanoparticles as edible for green mold protection under room storage conditions. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1034535

Arianto, E., & Susanto, D. (2024). Inovasi elektrostimulator berbasis Arduino: Solusi sederhana untuk eksperimen dan aplikasi medis. Jurnal J-Innovation, 13(2). https://doi.org/10.55600/jipa.v13i2.288

Barelli, R. G., Avelino, V. F., & Castro, M. C. F. (2023). STIMGRASP: A home-based functional electrical stimulator for grasp restoration in daily activities. Sensors, 23(1). https://doi.org/10.3390/s23010010

Dyah Astuti, S., & Destiani, R. (2022). Pemanfaatan elektrostimulator AES-5 sebagai terapi komplementer untuk meningkatkan imunitas tubuh di PT. Petro Graha Medika Klinik Satelit Kalimantan Gresik. Jurnal Pengabdian Magister Pendidikan IPA, 5(1). https://doi.org/10.29303/jpmpi.v5i1.1035

Maheu, E., Soriot-Thomas, S., Noel, E., Ganry, H., Lespessailles, E., & Cortet, B. (2022). Wearable transcutaneous electrical nerve stimulation (actiTENS®) is effective and safe for the treatment of knee osteoarthritis pain: A randomized controlled trial versus weak opioids. Therapeutic Advances in Musculoskeletal Disease, 14. https://doi.org/10.1177/1759720X211066233

Marunaka, Y., Yagi, K., Imagawa, N., Kobayashi, H., Murayama, M., Minamibata, A., Takanashi, Y., & Nakahari, T. (2021). Possibility of venous serum Cl− concentration ([Cl−]s) as a marker for human metabolic status: Correlation of [Cl−]s to age, fasting blood sugar (FBS), and glycated hemoglobin (HbA1c). International Journal of Molecular Sciences, 22(20). https://doi.org/10.3390/ijms222011111

Moezy, A., Masoudi, S., Nazari, A., & Abasi, A. (2024). A controlled randomized trial with a 12-week follow-up investigating the effects of medium-frequency neuromuscular electrical stimulation on pain, VMO thickness, and functionality in patients with knee osteoarthritis. BMC Musculoskeletal Disorders, 25(1). https://doi.org/10.1186/s12891-024-07266-8

Sulaiman, N. A. Z., Ibrahim, A. A., & Mohd Zaman, M. H. (2021). A programmable transcutaneous electrical nerve stimulation device based on Arduino and remote control using a smartphone. International Journal of Advanced Technology and Engineering Exploration, 8(75), 320–327. https://doi.org/10.19101/IJATEE.2020.762149

Uveges, I., & Ring, O. (2023). HunEmBERT: A fine-tuned BERT-model for classifying sentiment and emotion in political communication. IEEE Access, 11, 60267–60278. https://doi.org/10.1109/ACCESS.2023.3285536

Vance, C. G. T., Dailey, D. L., Chimenti, R. L., Van Gorp, B. J., Crofford, L. J., & Sluka, K. A. (2022). Using TENS for pain control: Update on the state of the evidence. Medicina, 58(10). https://doi.org/10.3390/medicina58101332

Wang, H. P., Guo, A. W., Zhou, Y. X., Xia, Y., Huang, J., Xu, C. Y., Huang, Z. H., Lü, X., & Wang, Z. G. (2017). A wireless wearable surface functional electrical stimulator. International Journal of Electronics, 104(9), 1514–1526. https://doi.org/10.1080/00207217.2017.1312708

Yamada, K., Shimizu, H., Doi, N., Harada, K., Ishizuka-Inoue, M., Yamashita, R., Takamatsu, S., Hayashi-Nishiyama, S., Okamoto, Y., & Aoyama, T. (2025). Usefulness and safety of a wearable transcutaneous electrical nerve stimulation device for promoting exercise therapy in patients with chronic knee pain: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 106(2), 167–176. https://doi.org/10.1016/j.apmr.2024.08.021

Zhang, Y., Wang, Y., Zhao, K., Yang, M., Ye, Z., & Zhang, X. (2025). Advances in wearable and implantable devices for wireless electrical stimulation therapy. Discover Electronics, 2(1). https://doi.org/10.1007/s44291-025-00046-1

Downloads

Published

2025-09-30

How to Cite

Dzulkifli Dalung Simamora, Imam Tri Harsoyo, & Pramesti Kusumanigntyas. (2025). Rancang Bangun Alat Elektrostimulator Portable. Journal of Health Technology and Public Health, 2(3), 47–57. Retrieved from https://ejournal.stikessemarang.ac.id/index.php/JHTPH/article/view/37

Similar Articles

You may also start an advanced similarity search for this article.