Rancang Bangun Tensimeter Digital Berbasis Internet of Things
Keywords:
BPM, Digital Sphygmomanometer, Internet of Things, LCD, MPX5700APAbstract
Blood pressure is a crucial factor in the circulatory system of the human body. It refers to the amount of force exerted by the blood on the inner walls of the arteries when it is pumped throughout the circulatory system. Blood pressure can be measured using a device known as a digital sphygmomanometer, which determines systolic pressure, diastolic pressure, and beats per minute (BPM) of the human heart. As technology evolves, the digital sphygmomanometer has been enhanced with features such as the Internet of Things (IoT). IoT in healthcare refers to the use of information technology to enable remote health monitoring by healthcare professionals. A digital sphygmomanometer equipped with IoT facilitates the exchange of diagnostic information, treatment decisions, and prevention of diseases and injuries. This IoT-based digital sphygmomanometer is designed using the ESP32 microcontroller. A DC motor is used to apply pressure to the cuff, and a solenoid valve is used to release air from the cuff. The MPX5700AP sensor detects systolic and diastolic blood pressure, as well as BPM. The system also includes a motor driver to control the DC motor and solenoid, a Nextion LCD display to show blood pressure results, and a web server to display and store measurement data. The percentage of measurement error for systolic pressure ranges from the smallest error of 3% to the highest error of 25%. For diastolic pressure, the error ranges from 4% to 36%. As for BPM, the smallest error recorded is 13.6%, and the highest is 70.2%. This device helps patients monitor their systolic pressure, diastolic pressure, and BPM, with results saved and monitored through a database system.
References
Adilla, A., & Eka Mustika, S. (2023). Hubungan usia dan jenis kelamin terhadap kejadian kanker kolorektal. Jurnal Kedokteran STM, VI(1), 53-59. https://doi.org/10.30743/stm.v6i1.349
Aditama, D. A., Andini, R., Achmad, M. R., Nofikasari, N., Sari, T. P., & Sumarno, R. N. (2024). Peningkatan efisiensi penyemprotan pestisida melalui penerapan sprayer motor DC pada tanaman padi di Dusun Ketanon. Jurnal Hilirisasi Technology Kepada Masyarakat (SITECHMAS), 5(2), 92-97.
Ashshiddiq, R., & Rahmadya, B. (2023). Rancang alat pengukur tekanan darah otomatis berbasis Internet of Things. Chipset, 4(01), 23-35. https://doi.org/10.25077/chipset.4.01.23-35.2023
Bento, A. C. (2018). IoT of Nextion X TFT ILI9341: Experimental results and comparative survey. International Research Journal of Engineering, IT & Scientific Research, 4(2), 14-23. https://doi.org/10.21744/irjeis.v4n2.52
Burange, M. (2020). Sejarah Internet of Things (IoT). July, 1-23.
Dirta, D. T., & Suyanto. (2013). Rancang bangun sistem transmisi data tekanan darah untuk mendukung human health monitoring berbasis pada mobile platform Android Damar. Jurnal Teknik Pomits Vol.2, No. 2, (2013), 2(2), 1-6. file:///C:/Users/Administrator/Downloads/tensimeter%202.pdf
FEBRIANTI, A. N. A. F. (2019). Gambaran posisi dan lokasi pengukuran tekanan darah terhadap nilai tekanan darah pada pasien hipertensi di RSUD dr. R. Goetheng Taroenadibrata Purbalingga. Universitas Muhammadiyah Purwokerto.
Firmansyah, D. (n.d.). 02421063 Muhammad Daffa Firmansyah (1).
Gelao, G., Marani, R., Passaro, V. M. N., & Perri, A. G. (2015). Oscillometric continuous blood pressure sensing for wearable health monitoring system. arXiv. https://arxiv.org/abs/1501.02958
Hakimi, A. R., Rivai, M., & Pirngadi, H. (2021). Sistem kontrol dan monitor kadar salinitas air tambak berbasis IoT LoRa. Jurnal Teknik ITS, 10(1). https://doi.org/10.12962/j23373539.v10i1.59612
Hasmuroah, N. A., Jumakil, J., & Yunawati, I. (2023). Hubungan kondisi fisik lingkungan, kebiasaan merokok, dan konsumsi alkohol dengan tekanan darah pada pekerja di laboratorium PT. Anugrah Harisma Barakah Kabupaten Bombana. Jurnal Kesehatan Lingkungan Universitas Halu Oleo, 4(1), 35-44. https://doi.org/10.37887/jkl-uho.v4i1.43253
K, R. V., S, V., G, P., K, A., M, N. K., & Vijayaraghavan, V. (2021). BP-Net: Efficient deep learning for continuous arterial blood pressure estimation using photoplethysmogram. arXiv. https://arxiv.org/abs/2111.14558
Lin, W., Demirel, B. U., Al Faruque, M. A., & Li, G. P. (2021). Energy-efficient blood pressure monitoring based on single-site photoplethysmogram on wearable devices. arXiv. https://arxiv.org/abs/2108.00672
Lin, W., Demirel, B. U., Al Faruque, M. A., & Li, G. P. (2021). Energy-efficient blood pressure monitoring based on single-site photoplethysmogram on wearable devices. arXiv. https://arxiv.org/abs/2108.00672 https://doi.org/10.1109/EMBC46164.2021.9630488
Meilani, N., Amiruddin, E. E., Fitriani, F., Nurhudayah, N., & Kasmiati, K. (2021). Hubungan program Prolanis dengan pengendalian penyakit hipertensi di wilayah kerja Puskesmas Betoambari Kota Bau Bau. Community Research of Epidemiology (CORE), 1(2), 74. https://doi.org/10.24252/corejournal.v1i2.21231
Xuan, Y., Fascetti, A. J., Barry, C., & Wang, E. J. (2023). Development of a one dollar blood pressure monitor. arXiv. https://arxiv.org/abs/2308.05897







